Building Domain-Specific Machine Learning Workflows: A Conceptual Framework for the State-of-the-Practice

Author:

Oakes Bentley James1,Famelis Michalis2,Sahraoui Houari2

Affiliation:

1. Département de génie informatique et génie logiciel, Polytechnique Montréeal, Canada

2. Département d’informatique et de recherche opérationnelle, Université de Montréal, Canada

Abstract

Domain experts are increasingly employing machine learning to solve their domain-specific problems. This article presents to software engineering researchers the six key challenges that a domain expert faces in addressing their problem with a computational workflow, and the underlying executable implementation. These challenges arise out of our conceptual framework which presents the “route” of transformations that a domain expert may choose to take while developing their solution. To ground our conceptual framework in the state-of-the-practice, this article discusses a selection of available textual and graphical workflow systems and their support for the transformations described in our framework. Example studies from the literature in various domains are also examined to highlight the tools used by the domain experts as well as a classification of the domain-specificity and machine learning usage of their problem, workflow, and implementation. The state-of-the-practice informs our discussion of the six key challenges, where we identify which challenges and transformations are not sufficiently addressed by available tools. We also suggest possible research directions for software engineering researchers to increase the automation of these tools and disseminate best-practice techniques between software engineering and various scientific domains.

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Reference139 articles.

1. Data mining approach for predicting the daily Internet data traffic of a smart university;Adekitan Aderibigbe Israel;Journal of Big Data,2019

2. Azza  E Ahmed , Joshua  M Allen , Tajesvi Bhat , Prakruthi Burra , Christina  E Fliege , Steven  N Hart , Jacob  R Heldenbrand , Matthew  E Hudson , Dave Deandre Istanto , Michael  T Kalmbach , et al . 2021 . Design considerations for workflow management systems use in production genomics research and the clinic. Scientific reports 11, 1 (2021), 1–18. Azza E Ahmed, Joshua M Allen, Tajesvi Bhat, Prakruthi Burra, Christina E Fliege, Steven N Hart, Jacob R Heldenbrand, Matthew E Hudson, Dave Deandre Istanto, Michael T Kalmbach, et al. 2021. Design considerations for workflow management systems use in production genomics research and the clinic. Scientific reports 11, 1 (2021), 1–18.

3. Towards automating the construction of recommender systems for low-code development platforms

4. Ethem Alpaydin . 2020. Introduction to machine learning . MIT press . Ethem Alpaydin. 2020. Introduction to machine learning. MIT press.

5. Peter Amstutz , Maxim Mikheev , Michael  R. Crusoe , Nebojša Tijanić , Samuel Lampa , et al . 2021 . Existing Workflow systems. Common Workflow Language wiki, GitHub. https://s.apache.org/existing-workflow-systems Updated 2021-12-14, accessed 2022-01-06. Peter Amstutz, Maxim Mikheev, Michael R. Crusoe, Nebojša Tijanić, Samuel Lampa, et al. 2021. Existing Workflow systems. Common Workflow Language wiki, GitHub. https://s.apache.org/existing-workflow-systems Updated 2021-12-14, accessed 2022-01-06.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3