Web search using mobile cores

Author:

Janapa Reddi Vijay1,Lee Benjamin C.2,Chilimbi Trishul3,Vaid Kushagra4

Affiliation:

1. Harvard University, Cambridge, MA, USA

2. Stanford University, Palo Alto, CA, USA

3. Microsoft Research, Redmond, WA, USA

4. Microsoft Corporation, Redmond, WA, USA

Abstract

The commoditization of hardware, data center economies of scale, and Internet-scale workload growth all demand greater power efficiency to sustain scalability. Traditional enterprise workloads, which are typically memory and I/O bound, have been well served by chip multiprocessors com- prising of small, power-efficient cores. Recent advances in mobile computing have led to modern small cores capable of delivering even better power efficiency. While these cores can deliver performance-per-Watt efficiency for data center workloads, small cores impact application quality-of-service robustness, and flexibility, as these workloads increasingly invoke computationally intensive kernels. These challenges constitute the price of efficiency. We quantify efficiency for an industry-strength online web search engine in production at both the microarchitecture- and system-level, evaluating search on server and mobile-class architectures using Xeon and Atom processors.

Publisher

Association for Computing Machinery (ACM)

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CoolDC: A Cost-Effective Immersion-Cooled Datacenter with Workload-Aware Temperature Scaling;ACM Transactions on Architecture and Code Optimization;2024-09-14

2. ProPack: Executing Concurrent Serverless Functions Faster and Cheaper;Proceedings of the 32nd International Symposium on High-Performance Parallel and Distributed Computing;2023-08-07

3. BP-Tree: Overcoming the Point-Range Operation Tradeoff for In-Memory B-Trees;Proceedings of the VLDB Endowment;2023-07

4. PIMCloud: QoS-Aware Resource Management of Latency-Critical Applications in Clouds with Processing-in-Memory;2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA);2022-04

5. The Case for In-Memory OLAP on "Wimpy" Nodes;2021 IEEE 37th International Conference on Data Engineering (ICDE);2021-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3