Hierarchical Monte Carlo Tree Search for Latent Skill Planning

Author:

Pei Yue1ORCID

Affiliation:

1. University of Pittsburgh, USA

Publisher

ACM

Reference38 articles.

1. Joshua Achiam , Harrison Edwards , Dario Amodei , and Pieter Abbeel . 2018. Variational option discovery algorithms. arXiv preprint arXiv:1807.10299 ( 2018 ). Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter Abbeel. 2018. Variational option discovery algorithms. arXiv preprint arXiv:1807.10299 (2018).

2. Marcin Andrychowicz , Filip Wolski , Alex Ray , Jonas Schneider , Rachel Fong , Peter Welinder , Bob McGrew , Josh Tobin , Open AI Pieter Abbeel , and Wojciech Zaremba . 2017. Hindsight experience replay. Advances in neural information processing systems 30 ( 2017 ). Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. 2017. Hindsight experience replay. Advances in neural information processing systems 30 (2017).

3. Andrew  G Barto and Sridhar Mahadevan . 2003. Recent advances in hierarchical reinforcement learning. Discrete event dynamic systems 13, 1 ( 2003 ), 41–77. Andrew G Barto and Sridhar Mahadevan. 2003. Recent advances in hierarchical reinforcement learning. Discrete event dynamic systems 13, 1 (2003), 41–77.

4. Andres Campero , Roberta Raileanu , Heinrich Küttler , Joshua  B Tenenbaum , Tim Rocktäschel , and Edward Grefenstette . 2020. Learning with amigo: Adversarially motivated intrinsic goals. arXiv preprint arXiv:2006.12122 ( 2020 ). Andres Campero, Roberta Raileanu, Heinrich Küttler, Joshua B Tenenbaum, Tim Rocktäschel, and Edward Grefenstette. 2020. Learning with amigo: Adversarially motivated intrinsic goals. arXiv preprint arXiv:2006.12122 (2020).

5. Kurtland Chua , Roberto Calandra , Rowan McAllister , and Sergey Levine . 2018. Deep reinforcement learning in a handful of trials using probabilistic dynamics models. Advances in neural information processing systems 31 ( 2018 ). Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. 2018. Deep reinforcement learning in a handful of trials using probabilistic dynamics models. Advances in neural information processing systems 31 (2018).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3