1. Robert Adragna , Elliot Creager , David Madras , and Richard Zemel . 2020. Fairness and robustness in invariant learning: A case study in toxicity classification. arXiv preprint arXiv:2011.06485 ( 2020 ). Robert Adragna, Elliot Creager, David Madras, and Richard Zemel. 2020. Fairness and robustness in invariant learning: A case study in toxicity classification. arXiv preprint arXiv:2011.06485 (2020).
2. Chirag Agarwal Himabindu Lakkaraju and Marinka Zitnik. 2021. Towards a unified framework for fair and stable graph representation learning. In Uncertainty in Artificial Intelligence. PMLR 2114–2124. Chirag Agarwal Himabindu Lakkaraju and Marinka Zitnik. 2021. Towards a unified framework for fair and stable graph representation learning. In Uncertainty in Artificial Intelligence. PMLR 2114–2124.
3. Martin Arjovsky , Léon Bottou , Ishaan Gulrajani , and David Lopez-Paz . 2019. Invariant risk minimization. arXiv preprint arXiv:1907.02893 ( 2019 ). Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. 2019. Invariant risk minimization. arXiv preprint arXiv:1907.02893 (2019).
4. Fairness in Recommendation Ranking through Pairwise Comparisons
5. Deep Clustering for Unsupervised Learning of Visual Features