InTune: Reinforcement Learning-based Data Pipeline Optimization for Deep Recommendation Models

Author:

Nagrecha Kabir1ORCID,Liu Lingyi2ORCID,Delgado Pablo2ORCID,Padmanabhan Prasanna2ORCID

Affiliation:

1. Computer Science & Engineering, University of California, San Diego, USA

2. Machine Learning Platform, Netflix, Inc., USA

Publisher

ACM

Reference69 articles.

1. Understanding Training Efficiency of Deep Learning Recommendation Models at Scale

2. Muhammad Adnan , Yassaman Ebrahimzadeh Maboud , Divya Mahajan , and Prashant  J Nair . 2022. Heterogeneous Acceleration Pipeline for Recommendation System Training. arXiv preprint arXiv:2204.05436 ( 2022 ). Muhammad Adnan, Yassaman Ebrahimzadeh Maboud, Divya Mahajan, and Prashant J Nair. 2022. Heterogeneous Acceleration Pipeline for Recommendation System Training. arXiv preprint arXiv:2204.05436 (2022).

3. Justin Boyan and Andrew Moore . 1994. Generalization in reinforcement learning: Safely approximating the value function. Advances in neural information processing systems 7 ( 1994 ). Justin Boyan and Andrew Moore. 1994. Generalization in reinforcement learning: Safely approximating the value function. Advances in neural information processing systems 7 (1994).

4. Wide & Deep Learning for Recommender Systems

5. The i486 CPU: executing instructions in one clock cycle

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PreSto: An In-Storage Data Preprocessing System for Training Recommendation Models;2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA);2024-06-29

2. Research on Time Series Data Prediction Based on Machine Learning Algorithms;2024 IEEE 2nd International Conference on Control, Electronics and Computer Technology (ICCECT);2024-04-26

3. Toward a Systems Theory of Algorithms;IEEE Control Systems Letters;2024

4. Saturn: An Optimized Data System for Multi-Large-Model Deep Learning Workloads;Proceedings of the VLDB Endowment;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3