A Lightweight Method for Modeling Confidence in Recommendations with Learned Beta Distributions

Author:

Knyazev Norman1ORCID,Oosterhuis Harrie1ORCID

Affiliation:

1. Radboud University, Netherlands

Funder

SURF Cooperative

Publisher

ACM

Reference52 articles.

1. Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dandelion Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dandelion Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

2. Gediminas Adomavicius Sreeharsha Kamireddy and YoungOk Kwon. 2007. Towards More Confident Recommendations: Improving Recommender Systems Using Filtering Approach Based on Rating Variance. (2007) 6. Gediminas Adomavicius Sreeharsha Kamireddy and YoungOk Kwon. 2007. Towards More Confident Recommendations: Improving Recommender Systems Using Filtering Approach Based on Rating Variance. (2007) 6.

3. RecSys 2020 Challenge Workshop: Engagement Prediction on Twitter’s Home Timeline

4. Estimating Confidence of Individual User Predictions in Item-based Recommender Systems

5. Djallel Bouneffouf , Amel Bouzeghoub , and Alda Lopes Ganarski . 2013. Risk-Aware Recommender Systems . In Neural Information Processing, Minho Lee, Akira Hirose, Zeng-Guang Hou, and Rhee Man Kil (Eds.). Springer , 57–65. Djallel Bouneffouf, Amel Bouzeghoub, and Alda Lopes Ganarski. 2013. Risk-Aware Recommender Systems. In Neural Information Processing, Minho Lee, Akira Hirose, Zeng-Guang Hou, and Rhee Man Kil (Eds.). Springer, 57–65.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Beyond Binary Preference: Leveraging Bayesian Approaches for Joint Optimization of Ranking and Calibration;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. Learning enhancing modality-invariant features for visible-infrared person re-identification;International Journal of Machine Learning and Cybernetics;2024-04-22

3. Report on the 21st Dutch-Belgian Information Retrieval Workshop (DIR 2023);ACM SIGIR Forum;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3