Fit for Forensics: Taxonomy and Common Model for Forensic Analysis of Fitness Trackers

Author:

Hammer Andreas1ORCID,Geus Julian1ORCID,Nicolai Florian2ORCID,Schütz Philip3ORCID,Fein Christofer3ORCID,Freiling Felix1ORCID

Affiliation:

1. IT Security Infrastructures Lab, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Germany

2. Lehrstuhl für Strafrecht, Strafprozessrecht und Rechtsphilosophie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Germany

3. Albstadt-Sigmaringen University, Germany

Abstract

Fitness trackers, smart watches, wearables and everything in between have evolved from being highly specialized sports technology and cyber gadgets of early adopters into being similarly ubiquitous devices like smartphones. Unsurprisingly, the data collected by these devices has entered the scope of forensic investigations, providing user-centered and extensive measurements that may prove very valuable as complementary or perhaps even essential evidence in criminal cases. While there exists a body of work focused on the analysis of data from individual devices, the area still appears fragmented. To counter this, we provide a definition and taxonomy of fitness trackers and integrate existing work into a universal model for forensic analysis of such devices that also takes legal requirements into account.

Publisher

Association for Computing Machinery (ACM)

Reference41 articles.

1. Eoghan Casey. 2011. Digital Evidence and Computer Crime - Forensic Science, Computers and the Internet, 3rd Edition. Academic Press. http://www.elsevierdirect.com/product.jsp?isbn=9780123742681

2. Patterns of use and key predictors for the use of wearable health care devices by US adults: insights from a national survey;Chandrasekaran Ranganathan;Journal of medical Internet research,2020

3. Real-time Precise Point Positioning with a Xiaomi MI 8 Android Smartphone

4. The HL7 Clinical Document Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3