Origin-Destination Travel Time Oracle for Map-based Services

Author:

Lin Yan1ORCID,Wan Huaiyu1ORCID,Hu Jilin2ORCID,Guo Shengnan1ORCID,Yang Bin2ORCID,Lin Youfang1ORCID,Jensen Christian S.3ORCID

Affiliation:

1. Beijing Jiaotong University, Beijing, China

2. East China Normal University, Shanghai, China

3. Aalborg University, Aalborg, Denmark

Abstract

Given an origin (O), a destination (D), and a departure time (T), an Origin-Destination (OD) travel time oracle~(ODT-Oracle) returns an estimate of the time it takes to travel from O to D when departing at T. ODT-Oracles serve important purposes in map-based services. To enable the construction of such oracles, we provide a travel-time estimation (TTE) solution that leverages historical trajectories to estimate time-varying travel times for OD pairs. The problem is complicated by the fact that multiple historical trajectories with different travel times may connect an OD pair, while trajectories may vary from one another. To solve the problem, it is crucial to remove outlier trajectories when doing travel time estimation for future queries. We propose a novel, two-stage framework called Diffusion-based Origin-destination Travel Time Estimation (DOT), that solves the problem. First, DOT employs a conditioned Pixelated Trajectories (PiT) denoiser that enables building a diffusion-based PiT inference process by learning correlations between OD pairs and historical trajectories. Specifically, given an OD pair and a departure time, we aim to infer a PiT. Next, DOT encompasses a Masked Vision Transformer~(MViT) that effectively and efficiently estimates a travel time based on the inferred PiT. We report on extensive experiments on two real-world datasets that offer evidence that DOT is capable of outperforming baseline methods in terms of accuracy, scalability, and explainability.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Association for Computing Machinery (ACM)

Reference66 articles.

1. Structured denoising diffusion models in discrete state-spaces;Austin Jacob;NeurIPS,2021

2. Fresh-product supply chain management with logistics outsourcing

3. Pingfu Chao , Yehong Xu , Wen Hua , and Xiaofang Zhou . 2020. A survey on map-matching algorithms . In ADC. Springer , 121--133. Pingfu Chao, Yehong Xu, Wen Hua, and Xiaofang Zhou. 2020. A survey on map-matching algorithms. In ADC. Springer, 121--133.

4. XGBoost

5. Kyunghyun Cho , Bart van Merrienboer , cC aglar Gü lcc ehre , Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014 . Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. In EMNLP. 1724--1734. Kyunghyun Cho, Bart van Merrienboer, cC aglar Gü lcc ehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. In EMNLP. 1724--1734.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3