Verification-Preserving Inlining in Automatic Separation Logic Verifiers

Author:

Dardinier Thibault1ORCID,Parthasarathy Gaurav1ORCID,Müller Peter1ORCID

Affiliation:

1. ETH Zurich, Switzerland

Abstract

Bounded verification has proved useful to detect bugs and to increase confidence in the correctness of a program. In contrast to unbounded verification, reasoning about calls via (bounded) inlining and about loops via (bounded) unrolling does not require method specifications and loop invariants and, therefore, reduces the annotation overhead to the bare minimum, namely specifications of the properties to be verified. For verifiers based on traditional program logics, verification is preserved by inlining (and unrolling): successful unbounded verification of a program w.r.t. some annotation implies successful verification of the inlined program. That is, any error detected in the inlined program reveals a true error in the original program. However, this essential property might not hold for automatic separation logic verifiers such as Caper, GRASShopper, RefinedC, Steel, VeriFast, and verifiers based on Viper. In this setting, inlining generally changes the resources owned by method executions, which may affect automatic proof search algorithms and introduce spurious errors. In this paper, we present the first technique for verification-preserving inlining in automatic separation logic verifiers. We identify a semantic condition on programs and prove in Isabelle/HOL that it ensures verification-preserving inlining for state-of-the-art automatic separation logic verifiers. We also prove a dual result: successful verification of the inlined program ensures that there are method and loop annotations that enable the verification of the original program for bounded executions. To check our semantic condition automatically, we present two approximations that can be checked syntactically and with a program verifier, respectively. We implement these checks in Viper and demonstrate that they are effective for non-trivial examples from different verifiers.

Funder

Swiss National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unification for Subformula Linking under Quantifiers;Proceedings of the 13th ACM SIGPLAN International Conference on Certified Programs and Proofs;2024-01-09

2. Logic for reasoning about bugs in loops over data sequences (IFIL);Modeling and Analysis of Information Systems;2023-09-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3