A Problem-tailored Adversarial Deep Neural Network-Based Attack Model for Feed-Forward Physical Unclonable Functions

Author:

Aseeri Ahmad O.1

Affiliation:

1. Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

Abstract

With the exceeding advancement in technology, the sophistication of attacks is considerably increasing. Standard security methods fall short of achieving the security essentials of IoT against physical attacks due to the nature of IoTs being resource-constrained elements. Physical Unclonable Functions (PUFs) have been successfully employed as a lightweight memoryless solution to secure IoT devices. PUF is a device that exploits the integrated circuits’ inherent randomness originated during the fabrication process to give each physical entity a unique identifier. Nevertheless, because PUFs are vulnerable to mathematical clonability, Feed-Forward Arbiter PUF (FF PUF) was introduced to withstand potential attack methods. Motivated by the necessity to expose a critical vulnerability of the standard FF PUFs design, we introduce a problem-tailored adversarial model to attack FF PUF design using a carefully engineered loop-specific neural network-based design calibrated and trained using FPGA-based in-silicon implementation data to exhibit real-world attacking scenarios posed on FF PUFs, in addition to applying simulated data. The empirical results show that the proposed adversarial model adds outperforming results to the existing studies in attacking FF PUFs, manifesting the improved efficiency in breaking FF PUFs. We demonstrate our high-performing results in numerical experiments of language modeling using the deep Neural Networks method.

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Reference34 articles.

1. Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dandelion Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. https://www.tensorflow.org/ Software available from tensorflow.org. Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dandelion Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. https://www.tensorflow.org/ Software available from tensorflow.org.

2. Towards fast and accurate machine learning attacks of feed-forward arbiter PUFs

3. A Formalization of the Security Features of Physical Functions

4. Ahmad Aseeri. 2020. Noise-Resilient Neural Network-Based Adversarial Attack Modeling for XOR Physical Unclonable Functions. Journal of Cyber Security and Mobility(2020) 331–354. Ahmad Aseeri. 2020. Noise-Resilient Neural Network-Based Adversarial Attack Modeling for XOR Physical Unclonable Functions. Journal of Cyber Security and Mobility(2020) 331–354.

5. A Machine Learning-Based Security Vulnerability Study on XOR PUFs for Resource-Constraint Internet of Things

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3