Scalable virtual machine storage using local disks

Author:

Hansen Jacob Gorm1,Jul Eric2

Affiliation:

1. VMware, Aarhus, Denmark

2. Bell Laboratories, Alcatel-Lucent, Dublin, IrelandBell Laboratories, Alcatel-Lucent, Dublin, Ireland

Abstract

In virtualized data centers, storage systems have traditionally been treated as black boxes administered separately from the compute nodes. Direct-attached storage is often left unused, to not have VM availabilty depend on individual hosts. Our work aims to integrate storage and compute, addressing the fundamental limitations of contemporary centralized storage solutions. We are building Lithium, a distributed storage system designed specifically for virtualization workloads running in large-scale data centers and clouds. Lithium aims to be scalable, highly available, and compatible with commodity hardware and existing application software. The design of Lithium borrows techniques from Byzantine Fault Tolerance, stream processing, and distributed version control software, and demonstrates their practical applicability to the performance-sensitive task of virtual machine storage

Publisher

Association for Computing Machinery (ACM)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DeepClone: Lightweight State Replication of Deep Learning Models for Data Parallel Training;2020 IEEE International Conference on Cluster Computing (CLUSTER);2020-09

2. Application Execution Time Prediction for Effective CPU Provisioning in Virtualization Environment;IEEE Transactions on Parallel and Distributed Systems;2017-11-01

3. Towards scalable on-demand collective data access in IaaS clouds: An adaptive collaborative content exchange proposal;Journal of Parallel and Distributed Computing;2016-01

4. Discovering and Leveraging Content Similarity to Optimize Collective on-Demand Data Access to IaaS Cloud Storage;2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing;2015-05

5. BlobCR: Virtual disk based checkpoint-restart for HPC applications on IaaS clouds;Journal of Parallel and Distributed Computing;2013-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3