Affiliation:
1. Michigan State University, East Lansing, MI
Abstract
Data-driven Learning-enabled Systems are limited by the quality of available training data, particularly when trained offline. For systems that must operate in real-world environments, the space of possible conditions that can occur is vast and difficult to comprehensively predict at design time. Environmental uncertainty arises when run-time conditions diverge from design-time training conditions. To address this problem, automated methods can generate synthetic data to fill in gaps for training and test data coverage. We propose an evolution-based technique to assist developers with uncovering limitations in existing data when previously unseen environmental phenomena are introduced. This technique explores unique contexts for a given environmental condition, with an emphasis on diversity. Synthetic data generated by this technique may be used for two purposes: (1) to assess the robustness of a system to uncertain environmental factors and (2) to improve the system’s robustness. This technique is demonstrated to outperform random and greedy methods for multiple adverse environmental conditions applied to image-processing Deep Neural Networks.
Funder
Air Force Research Laboratory
NSF
Publisher
Association for Computing Machinery (ACM)
Subject
Software,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献