On β-Plurality Points in Spatial Voting Games

Author:

Aronov Boris1,De Berg Mark2,Gudmundsson Joachim3,Horton Michael3

Affiliation:

1. Tandon School of Engineering, New York University, USA

2. Department of Computing Science, TU Eindhoven, The Netherlands

3. School of Computer Science, University of Sydney, Australia

Abstract

Let V be a set of n points in mathcal R d , called voters . A point p ∈ mathcal R d is a plurality point for V when the following holds: For every q ∈ mathcal R d , the number of voters closer to p than to q is at least the number of voters closer to q than to p . Thus, in a vote where each  vV votes for the nearest proposal (and voters for which the proposals are at equal distance abstain), proposal  p will not lose against any alternative proposal  q . For most voter sets, a plurality point does not exist. We therefore introduce the concept of β-plurality points , which are defined similarly to regular plurality points, except that the distance of each voter to p (but not to  q ) is scaled by a factor  β , for some constant 0< β ⩽ 1. We investigate the existence and computation of β -plurality points and obtain the following results. • Define β * d := {β : any finite multiset V in mathcal R d admits a β-plurality point. We prove that β * d = √3/2, and that 1/√ d ⩽ β * d ⩽ √ 3/2 for all d ⩾ 3. • Define β ( p, V ) := sup {β : p is a β -plurality point for V }. Given a voter set V in mathcal R 2 , we provide an algorithm that runs in O ( n log n ) time and computes a point p such that β ( p , V ) ⩾ β * b . Moreover, for d ⩾ 2, we can compute a point  p with β ( p , V ) ⩾ 1/√ d in O ( n ) time. • Define β ( V ) := sup { β : V admits a β -plurality point}. We present an algorithm that, given a voter set V in mathcal R d , computes an ((1-ɛ)ċ β ( V ))-plurality point in time O n 2 ɛ 3d-2 ċ log n ɛ d-1 ċ log 2 1ɛ).

Funder

NWO

ARC

NSF

BSF

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Plurality in Spatial Voting Games with Constant $$\beta $$;Discrete & Computational Geometry;2024-01-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3