Confidence Indexing of Automated Detected Synsets: A Case Study on Contemporary Turkish Dictionary

Author:

Turan Erhan1,Orhan Umut2

Affiliation:

1. Osmaniye Korkut Ata University, Osmaniye, Turkey

2. Cukurova University, Adana, Turkey

Abstract

In this study, a novel confidence indexing algorithm is proposed to minimize human labor in controlling the reliability of automatically extracted synsets from a non-machine-readable monolingual dictionary. Contemporary Turkish Dictionary of Turkish Language Association is used as the monolingual dictionary data. First, the synonym relations are extracted by traditional text processing methods from dictionary definitions and a graph is prepared in Lemma-Sense network architecture. After each synonym relation is labeled by a proper confidence index, synonym pairs with desired confidence indexes are analyzed to detect synsets with a spanning tree-based method. This approach can label synsets with one of three cumulative confidence levels (CL-1, CL-2, and CL-3). According to the confidence levels, synsets are compared with KeNet which is the only open access Turkish Wordnet. Consequently, while most matches with the synsets of KeNet is determined in CL-1 and CL-2 confidence levels, the synsets determined at CL-3 level reveal errors in the dictionary definitions. This novel approach does not find only the reliability of automatically detected synsets, but it can also point out errors of detected synsets from the dictionary.

Funder

Scientific and Technological Research Council of Turkey

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3