Just-In-Time GPU Compilation for Interpreted Languages with Partial Evaluation

Author:

Fumero Juan1,Steuwer Michel1,Stadler Lukas2,Dubach Christophe1

Affiliation:

1. The University of Edinburgh

2. Oracle Labs, AT

Abstract

Computer systems are increasingly featuring powerful parallel devices with the advent of many-core CPUs and GPUs. This offers the opportunity to solve computationally-intensive problems at a fraction of the time traditional CPUs need. However, exploiting heterogeneous hardware requires the use of low-level programming language approaches such as OpenCL, which is incredibly challenging, even for advanced programmers. On the application side, interpreted dynamic languages are increasingly becoming popular in many domains due to their simplicity, expressiveness and flexibility. However, this creates a wide gap between the high-level abstractions offered to programmers and the low-level hardware-specific interface. Currently, programmers must rely on high performance libraries or they are forced to write parts of their application in a low-level language like OpenCL. Ideally, nonexpert programmers should be able to exploit heterogeneous hardware directly from their interpreted dynamic languages. In this paper, we present a technique to transparently and automatically offload computations from interpreted dynamic languages to heterogeneous devices. Using just-in-time compilation, we automatically generate OpenCL code at runtime which is specialized to the actual observed data types using profiling information. We demonstrate our technique using R, which is a popular interpreted dynamic language predominately used in big data analytic. Our experimental results show the execution on a GPU yields speedups of over 150x compared to the sequential FastR implementation and the obtained performance is competitive with manually written GPU code. We also show that when taking into account start-up time, large speedups are achievable, even when the applications run for as little as a few seconds.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3