Abstract
We introduce a novel algorithm for progressively removing noise from view-independent photon maps while simultaneously minimizing residual bias. Our method refines a primal set of photons using data from multiple successive passes to estimate the incident flux local to each photon. We show how this information can be used to guide a relaxation step with the goal of enforcing a constant, per-photon flux. Using a reformulation of the radiance estimate, we demonstrate how the resulting blue noise photon distribution yields a radiance reconstruction in which error is significantly reduced. Our approach has an open-ended runtime of the same order as unbiased and asymptotically consistent rendering methods, converging over time to a stable result. We demonstrate its effectiveness at storing caustic illumination within a view-independent framework and at a fidelity visually comparable to reference images rendered using progressive photon mapping.
Funder
Engineering and Physical Sciences Research Council
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献