An abstract interpretation framework for termination

Author:

Cousot Patrick1,Cousot Radhia2

Affiliation:

1. CNRS, École Normale Supérieure, and INRIA, France and Courant Institute, NYU, USA, Paris and New York, USA

2. CNRS, École Normale Supérieure, and INRIA, France, Paris, France

Abstract

Proof, verification and analysis methods for termination all rely on two induction principles: (1) a variant function or induction on data ensuring progress towards the end and (2) some form of induction on the program structure. The abstract interpretation design principle is first illustrated for the design of new forward and backward proof, verification and analysis methods for safety. The safety collecting semantics defining the strongest safety property of programs is first expressed in a constructive fixpoint form. Safety proof and checking/verification methods then immediately follow by fixpoint induction. Static analysis of abstract safety properties such as invariance are constructively designed by fixpoint abstraction (or approximation) to (automatically) infer safety properties. So far, no such clear design principle did exist for termination so that the existing approaches are scattered and largely not comparable with each other. For (1), we show that this design principle applies equally well to potential and definite termination. The trace-based termination collecting semantics is given a fixpoint definition. Its abstraction yields a fixpoint definition of the best variant function. By further abstraction of this best variant function, we derive the Floyd/Turing termination proof method as well as new static analysis methods to effectively compute approximations of this best variant function. For (2), we introduce a generalization of the syntactic notion of struc- tural induction (as found in Hoare logic) into a semantic structural induction based on the new semantic concept of inductive trace cover covering execution traces by segments, a new basis for formulating program properties. Its abstractions allow for generalized recursive proof, verification and static analysis methods by induction on both program structure, control, and data. Examples of particular instances include Floyd's handling of loop cutpoints as well as nested loops, Burstall's intermittent assertion total correctness proof method, and Podelski-Rybalchenko transition invariants.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference59 articles.

1. MODULAR RANKING ABSTRACTION

2. Bounded model checking;Biere A.;Advances in Computers,2003

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Personal Historical Perspective on Abstract Interpretation;The French School of Programming;2023-10-11

2. Abstract Interpretation: From 0, 1, to $$\infty $$;Intelligent Systems Reference Library;2023

3. Neural termination analysis;Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering;2022-11-07

4. Temporal prophecy for proving temporal properties of infinite-state systems;Formal Methods in System Design;2021-07-23

5. Synthesis of ranking functions via DNN;Neural Computing and Applications;2021-02-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3