Cache Design of SSD-Based Search Engine Architectures

Author:

Wang Jianguo1,Lo Eric2,Yiu Man Lung2,Tong Jiancong3,Wang Gang3,Liu Xiaoguang3

Affiliation:

1. University of California, San Diego, CA

2. Hong Kong Polytechnic University

3. Nankai University

Abstract

Caching is an important optimization in search engine architectures. Existing caching techniques for search engine optimization are mostly biased towards the reduction of random accesses to disks, because random accesses are known to be much more expensive than sequential accesses in traditional magnetic hard disk drive (HDD). Recently, solid-state drive (SSD) has emerged as a new kind of secondary storage medium, and some search engines like Baidu have already used SSD to completely replace HDD in their infrastructure. One notable property of SSD is that its random access latency is comparable to its sequential access latency. Therefore, the use of SSDs to replace HDDs in a search engine infrastructure may void the cache management of existing search engines. In this article, we carry out a series of empirical experiments to study the impact of SSD on search engine cache management. Based on the results, we give insights to practitioners and researchers on how to adapt the infrastructure and caching policies for SSD-based search engines.

Funder

National Natural Science Foundation of China

Key Projects in the Tianjin Science&Technology Pillar Program

Research Grants Council, University Grants Committee, Hong Kong

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ISP Agent: A Generalized In-storage-processing Workload Offloading Framework by Providing Multiple Optimization Opportunities;ACM Transactions on Architecture and Code Optimization;2024-01-19

2. Posicionamiento orgánico en motores de búsqueda, su relevancia científica y tendencias de investigación;Revista Universidad y Empresa;2023-09-29

3. NDANN: efficient SSD-based approximate nearest neighbor search through navigation;International Conference on Mechanisms and Robotics (ICMAR 2022);2022-11-10

4. Distributed and Decentralized Edge Caching in 5G Networks Using Non-Volatile Memory Systems;2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS);2022-07

5. An NVM SSD-based High Performance Query Processing Framework for Search Engines;IEEE Transactions on Knowledge and Data Engineering;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3