Affiliation:
1. Hasso Plattner Institute, University of Potsdam, Germany
Abstract
Generating a novel and descriptive caption of an image is drawing increasing interests in computer vision, natural language processing, and multimedia communities. In this work, we propose an end-to-end trainable deep bidirectional LSTM (Bi-LSTM (Long Short-Term Memory)) model to address the problem. By combining a deep convolutional neural network (CNN) and two separate LSTM networks, our model is capable of learning long-term visual-language interactions by making use of history and future context information at high-level semantic space. We also explore deep multimodal bidirectional models, in which we increase the depth of nonlinearity transition in different ways to learn hierarchical visual-language embeddings. Data augmentation techniques such as multi-crop, multi-scale, and vertical mirror are proposed to prevent overfitting in training deep models. To understand how our models “translate” image to sentence, we visualize and qualitatively analyze the evolution of Bi-LSTM internal states over time. The effectiveness and generality of proposed models are evaluated on four benchmark datasets: Flickr8K, Flickr30K, MSCOCO, and Pascal1K datasets. We demonstrate that Bi-LSTM models achieve highly competitive performance on both caption generation and image-sentence retrieval even without integrating an additional mechanism (e.g., object detection, attention model). Our experiments also prove that multi-task learning is beneficial to increase model generality and gain performance. We also demonstrate the performance of transfer learning of the Bi-LSTM model significantly outperforms previous methods on the Pascal1K dataset.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture
Cited by
96 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献