Techniques for Automated Machine Learning

Author:

Chen Yi-Wei1,Song Qingquan1,Hu Xia1

Affiliation:

1. Texas A&M University, College Station, TX, USA

Abstract

Automated machine learning (AutoML) aims to find optimal machine learning solutions automatically given a problem description, its task type, and datasets. It could release the burden of data scientists from the multifarious manual tuning process and enable the access of domain experts to the off-the-shelf machine learning solutions without extensive experience. In this paper, we portray AutoML as a bi-level optimization problem, where one problem is nested within another to search the optimum in the search space, and review the current developments of AutoML in terms of three categories, automated feature engineering (AutoFE), automated model and hyperparameter tuning (AutoMHT), and automated deep learning (AutoDL). Stateof- the-art techniques in the three categories are presented. The iterative solver is proposed to generalize AutoML techniques. We summarize popular AutoML frameworks and conclude with current open challenges of AutoML.

Publisher

Association for Computing Machinery (ACM)

Reference103 articles.

1. Amazon. Perform automatic model tuning. https://docs.aws.amazon.com/en_us/sagemaker/ latest/dg/automatic-model-tuning.html. Accessed: 2020-02--21. Amazon. Perform automatic model tuning. https://docs.aws.amazon.com/en_us/sagemaker/ latest/dg/automatic-model-tuning.html. Accessed: 2020-02--21.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unsupervised Generative Feature Transformation via Graph Contrastive Pre-training and Multi-objective Fine-tuning;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. Streamlining the generation of AI tools on a cloud medical imaging platform;2024 IEEE 22nd Mediterranean Electrotechnical Conference (MELECON);2024-06-25

3. A Genetic Algorithm-based Auto-ML System for Survival Analysis;Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing;2024-04-08

4. A dynamic adaptive multi-view fusion graph convolutional network recommendation model with dilated mask convolution mechanism;Information Sciences;2024-02

5. Using Auto-ML on Synthetic Point Cloud Generation;Applied Sciences;2024-01-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3