When Errors Become the Rule

Author:

Uneson Marcus1

Affiliation:

1. Lund University, Lund, Sweden

Abstract

Transformation-based learning (TBL) is a machine learning method for, in particular, sequential classification, invented by Eric Brill [Brill 1993b, 1995a]. It is widely used within computational linguistics and natural language processing, but surprisingly little in other areas. TBL is a simple yet flexible paradigm, which achieves competitive or even state-of-the-art performance in several areas and does not overtrain easily. It is especially successful at catching local, fixed-distance dependencies and seamlessly exploits information from heterogeneous discrete feature types. The learned representation—an ordered list of transformation rules—is compact and efficient, with clear semantics. Individual rules are interpretable and often meaningful to humans. The present article offers a survey of the most important theoretical work on TBL, addressing a perceived gap in the literature. Because the method should be useful also outside the world of computational linguistics and natural language processing, a chief aim is to provide an informal but relatively comprehensive introduction, readable also by people coming from other specialities.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference99 articles.

1. Harold Abelson and Gerald J. Sussman. 1996. Structure and Interpretation of Computer Programs. MIT Press Cambridge. Harold Abelson and Gerald J. Sussman. 1996. Structure and Interpretation of Computer Programs. MIT Press Cambridge.

2. MITRE

3. Unsupervised learning of a rule-based Spanish Part of Speech tagger

4. Alignment link projection using transformation-based learning

5. A tree-based statistical language model for natural language speech recognition. Acoustics, Speech and Signal Processing;Bahl Lalit R.;IEEE Transactions,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3