CLASENTI

Author:

Hamdi Ali1ORCID,Shaban Khaled2,Zainal Anazida1

Affiliation:

1. Faculty of Computing, UTM, Malaysia

2. Smart Pivoting QSTP LLC, Doha, Qatar

Abstract

Arabic text sentiment analysis suffers from low accuracy due to Arabic-specific challenges (e.g., limited resources, morphological complexity, and dialects) and general linguistic issues (e.g., fuzziness, implicit sentiment, sarcasm, and spam). The limited resources problem requires efforts to build new and improved Arabic corpora and lexica. We propose a class-specific sentiment analysis (CLASENTI) framework. The framework includes a new annotation approach to build multi-faceted Arabic corpus and lexicon allowing for simultaneous annotation of different facets, including domains, dialects, linguistic issues, and polarity strengths. Each of these facets has multiple classes (e.g., the nine classes representing dialects found in the Arab world). The new corpus and lexicon annotations facilitate the development of new class-specific classification models and polarity strength calculation. For the new sentiment classification models, we propose a hybrid model combining corpus-based and lexicon-based models. The corpus-based model has two interrelated phases to build; (1) full-corpus classification models for all facets; and (2) class-specific models trained on filtered subsets of the corpus according to the performances of the full-corpus models. To calculate polarity strengths, the lexicon-based model filters the annotated lexicon based on the specific classes of the domain and dialect. As a case study, we collect and annotate 15274 reviews from various sources, including surveys, Facebook comments, and Twitter posts, pertaining to governmental services. In addition, we develop a new web-based application to apply the proposed framework on the case study. CLASENTI framework reaches up to 95% accuracy and 93% F1-Score surpassing the best-known sentiment classifiers implemented in Scikit-learn library that achieve 82% accuracy and 81% F1-Score for Arabic when tested on the same dataset.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ensemble Stacking Model for Sentiment Analysis of Emirati and Arabic Dialects;Journal of King Saud University - Computer and Information Sciences;2023-09

2. Sentiment Analysis of Emirati Dialect;Big Data and Cognitive Computing;2022-05-17

3. Empirical Evaluation of Shallow and Deep Learning Classifiers for Arabic Sentiment Analysis;ACM Transactions on Asian and Low-Resource Language Information Processing;2022-01-31

4. C-SAR: Class-Specific and Adaptive Recognition for Arabic Handwritten Cheques;Advances on Intelligent Informatics and Computing;2022

5. A Systematic Review for Sentiment Analysis of Arabic Dialect Texts Researches;Proceedings of International Conference on Emerging Technologies and Intelligent Systems;2021-12-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3