Affiliation:
1. LIRMM, UMR CNRS 5506, University of Montpellier
Abstract
Over the past few years, a new era of smart connected devices has emerged in the market to enable the future world of the Internet of Things (IoT). A key requirement for IoT applications is the power consumption to allow very high autonomy in the case of battery-powered systems. Depending on the application, such devices will be most of the time in a low-power mode (sleep mode) and will wake up only when there is a task to accomplish (active mode). Emerging non-volatile memory technologies are seen as a very attractive solution to design ultra-low-power systems. Among these technologies, magnetic random access memory is a promising candidate, as it combines non-volatility, high density, reasonable latency, and low leakage. Integration of non-volatility as a new feature of memories has the great potential to allow full data retention after a complete shutdown with a fast wake-up time. This article explores the benefits of having a non-volatile processor to enable ultra-low-power IoT devices.
Funder
French National Research Agency
GREAT (heteroGeneous integRated magnetic tEchnology using multifunctional standardized sTack
European Union's Horizon 2020 research and innovation programme
Publisher
Association for Computing Machinery (ACM)
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Software
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献