Matrix multiplication

Author:

Eiron N.,Rodeh M.1,Steinwarts I.1

Affiliation:

1. IBM Haifa

Abstract

Modern machines present two challenges to algorithm engineers and compiler writers: They have superscalar, super-pipelined structure, and they have elaborate memory subsystems specifically designed to reduce latency and increase bandwidth. Matrix multiplication is a classical benchmark for experimenting with techniques used to exploit machine architecture and to overcome the limitations of contemporary memory subsystems.This research aims at advancing the state of the art of algorithm engineering by balancing instruction level parallelism, two levels of data tiling, copying to provably avoid any cache conflicts, and prefetching in parallel to computational operations, in order to fully exploit the memory bandwidth. Measurements on IBM's RS/6000 43P workstation show that the resultant matrix multiplication algorithm outperforms IBM's ESSL by 6.8-31.8%, is less sensitive to the size of the input data, and scales better.In this paper we introduce a cache aware algorithm for matrix multiplication. We also suggest generic guidelines that may be applied to compute intensive algorithm to efficiently utilize the data cache. We believe that some of our concepts may be embodied in compilers.

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimum Prefetching Patterns Searching: A Case Study of Matrix-Matrix Multiplication;2022 37th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC);2022-07-05

2. A Highly Efficient SGEMM Implementation using DMA on the Intel/Movidius Myriad-2;2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD);2020-09

3. Reconstructing Optimal Phylogenetic Trees: A Challenge in Experimental Algorithmics;Experimental Algorithmics;2002

4. High-Performance Algorithmic Engineering for Computationa Phylogenetics;Computational Science - ICCS 2001;2001

5. Using Recursion to Boost ATLAS’s Performance;High-Performance Computing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3