Strictly declarative specification of sophisticated points-to analyses

Author:

Bravenboer Martin1,Smaragdakis Yannis1

Affiliation:

1. University of Massachusetts, Amherst, Amherst, MA, USA

Abstract

We present the DOOP framework for points-to analysis of Java programs. DOOP builds on the idea of specifying pointer analysis algorithms declaratively, using Datalog: a logic-based language for defining (recursive) relations. We carry the declarative approach further than past work by describing the full end-to-end analysis in Datalog and optimizing aggressively using a novel technique specifically targeting highly recursive Datalog programs. As a result, DOOP achieves several benefits, including full order-of-magnitude improvements in runtime. We compare DOOP with Lhotak and Hendren's PADDLE, which defines the state of the art for context-sensitive analyses. For the exact same logical points-to definitions (and, consequently, identical precision) DOOP is more than 15x faster than PADDLE for a 1-call-site sensitive analysis of the DaCapo benchmarks, with lower but still substantial speedups for other important analyses. Additionally, DOOP scales to very precise analyses that are impossible with PADDLE and Whaley et al.'s bddbddb, directly addressing open problems in past literature. Finally, our implementation is modular and can be easily configured to analyses with a wide range of characteristics, largely due to its declarativeness.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generic Sensitivity: Generics-Guided Context Sensitivity for Pointer Analysis;IEEE Transactions on Software Engineering;2024-05

2. Towards Inter-Service Data Flow Analysis of Serverless Applications;2024 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER);2024-03-12

3. Accelerating Patch Validation for Program Repair With Interception-Based Execution Scheduling;IEEE Transactions on Software Engineering;2024-03

4. Object Graph Programming;Proceedings of the IEEE/ACM 46th International Conference on Software Engineering;2024-02-06

5. Flan: An Expressive and Efficient Datalog Compiler for Program Analysis;Proceedings of the ACM on Programming Languages;2024-01-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3