Energy Efficiency Analysis for the Single Frequency Approximation (SFA) Scheme

Author:

Pagani Santiago1,Chen Jian-Jia2

Affiliation:

1. Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

2. Karlsruhe Institute of Technology (KIT), Dortmund, Germany

Abstract

Energy-efficient designs are important issues in computing systems. This article studies the energy efficiency of a simple and linear-time strategy, called the Single Frequency Approximation (SFA) scheme, for periodic real-time tasks on multicore systems with a shared supply voltage in a voltage island. The strategy executes all the cores at a single frequency to just meet the timing constraints. SFA has been adopted in the literature after task partitioning, but the worst-case performance of SFA in terms of energy consumption incurred is an open problem. We provide comprehensive analysis for SFA to derive the cycle utilization distribution for its worst-case behaviour for energy minimization. Our analysis shows that the energy consumption incurred by using SFA for task execution is at most 1.53 (1.74, 2.10, 2.69, respectively), compared to the energy consumption of the optimal voltage/frequency scaling, when the dynamic power consumption is a cubic function of the frequency and the voltage island has up to 4 (8, 16, 32, respectively) cores. The analysis shows that SFA is indeed an effective scheme under practical settings, even though it is not optimal. Furthermore, since all the cores run at a single frequency and no frequency alignment for Dynamic Voltage and Frequency Scaling (DVFS) between cores is needed, any unicore dynamic power management technique for reducing the energy consumption for idling can be easily incorporated individually on each core in the voltage island. This article also provides an analysis of energy consumption for SFA combined with procrastination for Dynamic Power Management (DPM), resulting in an increment of 1 from the previous results for task execution. Furthermore, we also extend our analysis for deriving the approximation factor of SFA for a multicore system with multiple voltage islands.

Funder

Baden Wurttemberg MWK Juniorprofessoren-Programme

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3