Concept-based partitioning for large multidomain multifunctional embedded systems

Author:

Ahmed Waseem1,Myers Douglas2

Affiliation:

1. P. A. College of Engineering, Mangalore, India

2. Curtin University of Technology, Perth, Australia

Abstract

Hardware-software partitioning is an important phase in embedded systems. Decisions made during this phase impact the quality, cost, performance, and the delivery date of the final product. Over the past decade or more, various partitioning approaches have been proposed. A majority operate at a relatively fine granularity and use a low-level executable specification as the starting point. This presents problems if the context is families of industrial products with frequent release of upgraded or new members. Managing complexity using a low-level specification is extremely challenging and impacts developer productivity. Designing using a high-level specification and component-based development, although a better option, imposes component integration and replacement problems during system evolution and new product release. A new approach termed Concept-Based Partitioning is presented that focuses on system evolution, product lines, and large-scale reuse when partitioning. Beginning with information from UML 2.0 sequence diagrams and a concept repository concepts are identified and used as the unit of partitioning within a specification. A methodology for the refinement of interpart communication in the system specification using sequence diagrams is also presented. Change localization during system evolution, composability during large-scale reuse, and provision for configurable feature variations for a product line are facilitated by a Generic Adaptive Layer (GAL) around selected concepts. The methodology was applied on a subsystem of an Unmanned Aerial Vehicle (UAV) using various concepts which improved the composability of concepts while keeping performance and size overhead within the 2% range.

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Industrial information integration—A literature review 2006–2015;Journal of Industrial Information Integration;2016-06

2. Change Impact in Product Lines: A Systematic Mapping Study;Communications in Computer and Information Science;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3