Subverting Fair Image Search with Generative Adversarial Perturbations

Author:

Ghosh Avijit1,Jagielski Matthew2,Wilson Christo1

Affiliation:

1. Khoury College of Computer Sciences, Northeastern University, USA

2. Google Brain, USA

Funder

NSF (National Science Foundation)

Sloan Foundation

Publisher

ACM

Reference101 articles.

1. 116th Congress (2019-2020) . [n.d.]. H.R.2231 - Algorithmic Accountability Act of 2019 . https://www.congress.gov/bill/116th-congress/house-bill/2231. 116th Congress (2019-2020). [n.d.]. H.R.2231 - Algorithmic Accountability Act of 2019. https://www.congress.gov/bill/116th-congress/house-bill/2231.

2. Dzifa Adjaye-Gbewonyo Robert A Bednarczyk Robert L Davis and Saad B Omer. 2014. Using the Bayesian Improved Surname Geocoding Method (BISG) to create a working classification of race and ethnicity in a diverse managed care population: a validation study. Health services research 49 1 (2014) 268–283. Dzifa Adjaye-Gbewonyo Robert A Bednarczyk Robert L Davis and Saad B Omer. 2014. Using the Bayesian Improved Surname Geocoding Method (BISG) to create a working classification of race and ethnicity in a diverse managed care population: a validation study. Health services research 49 1 (2014) 268–283.

3. Alekh Agarwal Miroslav Dudík and Zhiwei Steven Wu. 2019. Fair regression: Quantitative definitions and reduction-based algorithms. arXiv preprint arXiv:1905.12843(2019). Alekh Agarwal Miroslav Dudík and Zhiwei Steven Wu. 2019. Fair regression: Quantitative definitions and reduction-based algorithms. arXiv preprint arXiv:1905.12843(2019).

4. Facebook AI. 2021. How we’re using Fairness Flow to help build AI that works better for everyone. Facebook AI. https://ai.facebook.com/blog/how-were-using-fairness-flow-to-help-build-ai-that-works-better-for-everyone/. Facebook AI. 2021. How we’re using Fairness Flow to help build AI that works better for everyone. Facebook AI. https://ai.facebook.com/blog/how-were-using-fairness-flow-to-help-build-ai-that-works-better-for-everyone/.

5. Defense Against Universal Adversarial Perturbations

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Beyond Behaviorist Representational Harms: A Plan for Measurement and Mitigation;The 2024 ACM Conference on Fairness, Accountability, and Transparency;2024-06-03

2. Dsap: Analyzing Bias Through Demographic Comparison of Datasets;2024

3. Measuring Equality in Machine Learning Security Defenses: A Case Study in Speech Recognition;Proceedings of the 16th ACM Workshop on Artificial Intelligence and Security;2023-11-26

4. When Fair Classification Meets Noisy Protected Attributes;Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society;2023-08-08

5. Inferring User Image-Search Goals Using SVM and Re-ranking process;2023 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE);2023-01-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3