1. Robert Adragna Elliot Creager David Madras and Richard Zemel. 2020. Fairness and robustness in invariant learning: A case study in toxicity classification. arXiv preprint arXiv:2011.06485(2020). Robert Adragna Elliot Creager David Madras and Richard Zemel. 2020. Fairness and robustness in invariant learning: A case study in toxicity classification. arXiv preprint arXiv:2011.06485(2020).
2. Alekh Agarwal , Alina Beygelzimer , Miroslav Dudik , John Langford , and Hanna Wallach . 2018 . A Reductions Approach to Fair Classification . In International Conference on Machine Learning (ICML). 60–69 . Alekh Agarwal, Alina Beygelzimer, Miroslav Dudik, John Langford, and Hanna Wallach. 2018. A Reductions Approach to Fair Classification. In International Conference on Machine Learning (ICML). 60–69.
3. Interpretable Machine Learning in Healthcare
4. Ulrich Aïvodji , Hiromi Arai , Olivier Fortineau , Sébastien Gambs , Satoshi Hara , and Alain Tapp . 2019 . Fairwashing: the risk of rationalization . In International Conference on Machine Learning. PMLR, 161–170 . Ulrich Aïvodji, Hiromi Arai, Olivier Fortineau, Sébastien Gambs, Satoshi Hara, and Alain Tapp. 2019. Fairwashing: the risk of rationalization. In International Conference on Machine Learning. PMLR, 161–170.
5. Ulrich Aïvodji Hiromi Arai Sébastien Gambs and Satoshi Hara. 2021. Characterizing the risk of fairwashing. arXiv preprint arXiv:2106.07504(2021). Ulrich Aïvodji Hiromi Arai Sébastien Gambs and Satoshi Hara. 2021. Characterizing the risk of fairwashing. arXiv preprint arXiv:2106.07504(2021).