SARDINE

Author:

Das Monidipa1ORCID,Pratama Mahardhika1,Ghosh Soumya K.2

Affiliation:

1. Nanyang Technological University, Singapore

2. Indian Institute of Technology (IIT) Kharagpur, India

Abstract

The timely and accurate prediction of remote sensing data is of utmost importance especially in a situation where the predicted data is utilized to provide insights into emerging issues, like environmental nowcasting. Significant research progress can be found to date in devising variants of neural network (NN) models to fulfil this requirement by improving feature extraction and dynamic process representation power. Nevertheless, all these existing NN models are built upon rigid structures that often fail to maintain tradeoff between bias and variance, and consequently, need to spend a lot of time to empirically determine the most appropriate network configuration. This article proposes a self-adaptive recurrent deep incremental network model (SARDINE) which is a novel variant of the deep recurrent neural network with intrinsic capability of self-constructing the network structure in a dynamic and incremental fashion while learning from observed data samples. Moreover, the proposed SARDINE is able to model the spatial feature evolution while scanning the data in a single pass manner, and this further saves significant time when dealing with remote sensing imagery containing millions of pixels. Subsequently, we employ SARDINE in combination with a spatial influence mapping unit to accomplish the prediction. The effectiveness of the proposed model is evaluated in terms of predicting a time series of normalized difference vegetation index (NDVI) data derived from Landsat Thematic Mapper (TM)-5 and Moderate Resolution Imaging Spectroradiometer (MODIS) Terra satellite imagery. The experimental result demonstrates that the SARDINE-based prediction is able to achieve state-of-the-art accuracy with significantly reduced computational cost.

Publisher

Association for Computing Machinery (ACM)

Subject

Discrete Mathematics and Combinatorics,Geometry and Topology,Computer Science Applications,Modeling and Simulation,Information Systems,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3