Effective Social Graph Deanonymization Based on Graph Structure and Descriptive Information

Author:

Fu Hao1,Zhang Aston2,Xie Xing3

Affiliation:

1. University of Science and Technology of China

2. University of Illinois at Urbana-Champaign

3. Microsoft Research, Beijing, China

Abstract

The study of online social networks has attracted increasing interest. However, concerns are raised for the privacy risks of user data since they have been frequently shared among researchers, advertisers, and application developers. To solve this problem, a number of anonymization algorithms have been recently developed for protecting the privacy of social graphs. In this article, we proposed a graph node similarity measurement in consideration with both graph structure and descriptive information, and a deanonymization algorithm based on the measurement. Using the proposed algorithm, we evaluated the privacy risks of several typical anonymization algorithms on social graphs with thousands of nodes from Microsoft Academic Search, LiveJournal, and the Enron email dataset, and a social graph with millions of nodes from Tencent Weibo. Our results showed that the proposed algorithm was efficient and effective to deanonymize social graphs without any initial seed mappings. Based on the experiments, we also pointed out suggestions on how to better maintain the data utility while preserving privacy.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Isomorphic Graph Embedding for Progressive Maximal Frequent Subgraph Mining;ACM Transactions on Intelligent Systems and Technology;2023-12-19

2. P$$^2$$CG: a privacy preserving collaborative graph neural network training framework;The VLDB Journal;2022-11-04

3. FEUI: Fusion Embedding for User Identification across social networks;Applied Intelligence;2021-10-22

4. User Identity Matching for Multisource Location Data;2021 IEEE 21st International Conference on Communication Technology (ICCT);2021-10-13

5. A generation probability based percolation network alignment method;World Wide Web;2021-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3