STARec: Adaptive Learning with Spatiotemporal and Activity Influence for POI Recommendation

Author:

Ji Weiyu1ORCID,Meng Xiangwu1ORCID,Zhang Yujie1ORCID

Affiliation:

1. School of Computer Science (National Pilot Software Engineering School) & Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunications, Haidian District, Beijing, China

Abstract

POI recommendation has become an essential means to help people discover attractive places. Intuitively, activities have an important impact on users’ decision-making, because users select POIs to attend corresponding activities. However, many existing studies ignore the social motivation of user behaviors and regard all check-ins as influenced only by individual user interests. As a result, they cannot model user preferences accurately, which degrades recommendation effectiveness. In this article, from the perspective of activities, this study proposes a probabilistic generative model called STARec. Specifically, based on the social effect of activities, STARec defines users’ social preferences as distinct from their individual interests and combines these with individual user activity interests to effectively depict user preferences. Moreover, the inconsistency between users’ social preferences and their decisions is modeled. An activity frequency feature is introduced to acquire accurate user social preferences because of close correlation between these and the key impact factor of corresponding check-ins. An alias sampling-based training method was used to accelerate training. Extensive experiments were conducted on two real-world datasets. Experimental results demonstrated that the proposed STARec model achieves superior performance in terms of high recommendation accuracy, robustness to data sparsity, effectiveness in handling cold-start problems, efficiency, and interpretability.

Funder

Mutual Project of the Beijing Municipal Education Commission

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3