Parametricity versus the universal type

Author:

Devriese Dominique1,Patrignani Marco2,Piessens Frank1

Affiliation:

1. KU Leuven, Belgium

2. MPI-SWS, Germany / CISPA, Germany

Abstract

There has long been speculation in the scientific literature on how to dynamically enforce parametricity such as that yielded by System F. Almost 20 years ago, Sumii and Pierce proposed a formal compiler from System F into the cryptographic lambda calculus: an untyped lambda calculus extended with an idealised model of encryption. They conjectured that this compiler was fully abstract, i.e. that compiled terms are contextually equivalent if and only if the original terms were, a property that can be seen as a form of secure compilation. The conjecture has received attention in several other publications since then, but remains open to this day. More recently, several researchers have been looking at gradually-typed languages that extend System F. In this setting it is natural to wonder whether embedding System F into these gradually-typed languages preserves contextual equivalence and thus parametricity. In this paper, we answer both questions negatively. We provide a concrete counterexample: two System F terms whose contextual equivalence is not preserved by the Sumii-Pierce compiler, nor the embedding into the polymorphic blame calculus. This counterexample relies on the absence in System F of what we call a universal type, i.e., a type that all other types can be injected into and extracted from. As the languages in which System F is compiled have a universal type, the compilation cannot be fully abstract; this paper explains why. We believe this paper thus sheds light on recent results in the field of gradually typed languages and it provides a perspective for further research into secure compilation of polymorphic languages.

Funder

Fonds Wetenschappelijk Onderzoek

Bundesministerium für Bildung und Forschung

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GTP Benchmarks for Gradual Typing Performance;Proceedings of the 2023 ACM Conference on Reproducibility and Replicability;2023-06-27

2. Gradual System F;Journal of the ACM;2022-10-28

3. Two Parametricities Versus Three Universal Types;ACM Transactions on Programming Languages and Systems;2022-09-21

4. Plausible sealing for gradual parametricity;Proceedings of the ACM on Programming Languages;2022-04-29

5. Robustly Safe Compilation, an Efficient Form of Secure Compilation;ACM Transactions on Programming Languages and Systems;2021-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3