Evaluation of Normal Model Visualization for Anomaly Detection in Maritime Traffic

Author:

Riveiro Maria1

Affiliation:

1. Informatics Research Centre, University of Skövde, Sweden

Abstract

Monitoring dynamic objects in surveillance applications is normally a demanding activity for operators, not only because of the complexity and high dimensionality of the data but also because of other factors like time constraints and uncertainty. Timely detection of anomalous objects or situations that need further investigation may reduce operators’ cognitive load. Surveillance applications may include anomaly detection capabilities, but their use is not widespread, as they usually generate a high number of false alarms, they do not provide appropriate cognitive support for operators, and their outcomes can be difficult to comprehend and trust. Visual analytics can bridge the gap between computational and human approaches to detecting anomalous behavior in traffic data, making this process more transparent. As a step toward this goal of transparency, this article presents an evaluation that assesses whether visualizations of normal behavioral models of vessel traffic support two of the main analytical tasks specified during our field work in maritime control centers. The evaluation combines quantitative and qualitative usability assessments. The quantitative evaluation, which was carried out with a proof-of-concept prototype, reveals that participants who used the visualization of normal behavioral models outperformed the group that did not do so. The qualitative assessment shows that domain experts have a positive attitude toward the provision of automatic support and the visualization of normal behavioral models, as these aids may reduce reaction time and increase trust in and comprehensibility of the system.

Funder

Information Fusion Research Program

Swedish Knowledge Foundation

Saab Electronic Defence Systems

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Human-Computer Interaction

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3