Efficient address remapping in distributed shared-memory systems

Author:

Zhang Lixin1,Parker Mike2,Carter John3

Affiliation:

1. IBM Austin Research Lab, Austin, TX

2. Cray Inc.

3. University of Utah, Salt Lake City, UT

Abstract

As processor performance continues to improve at a rate much higher than DRAM and network performance, we are approaching a time when large-scale distributed shared memory systems will have remote memory latencies measured in tens of thousands of processor cycles. The Impulse memory system architecture adds an optional level of address indirection at the memory controller. Applications can use this level of indirection to control how data is accessed and cached and thereby improve cache and bus utilization and reduce the number of memory accesses required. Previous Impulse work focuses on uniprocessor systems and relies on software to flush processor caches when necessary to ensure data coherence. In this paper, we investigate an extension of Impulse to multiprocessor systems that extends the coherence protocol to maintain data coherence without requiring software-directed cache flushing. Specifically, the multiprocessor Impulse controller can gather/scatter data across the network while its coherence protocol guarantees that each gather request gets coherent data and each scatter request updates every coherent replica in the system. Our simulation results demonstrate that the proposed system can significantly outperform conventional systems, achieving an average speedup of 9X on four memory-bound benchmarks on a 32-processor system.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Utilization of Shared Caches in Multicore Architectures;Arabian Journal for Science and Engineering;2016-06-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3