Tight Bounds for Monotone Minimal Perfect Hashing

Author:

Assadi Sepehr1ORCID,Farach-Colton Martín2ORCID,Kuszmaul William3ORCID

Affiliation:

1. Rutgers University, USA

2. New York University, USA

3. Massachusetts Institute of Technology, USA

Abstract

The monotone minimal perfect hash function (MMPHF) problem is the following indexing problem. Given a set \(S=\{s_{1},\ldots,s_{n}\}\) of \(n\) distinct keys from a universe \(U\) of size \(u\) , create a data structure \(\text{D}\) that answers the following query: \(\begin{equation*} \rm{R\small{ANK}}(q) = \begin{cases} \text{rank of } q \text{ in } S & q\in S\\ \text{arbitrary answer} & \text{otherwise.}\end{cases}\end{equation*}\) Solutions to the MMPHF problem are in widespread use in both theory and practice. The best upper bound known for the problem encodes \(\text{D}\) in \(O(n\log\log\log u)\) bits and performs queries in \(O(\log u)\) time. It has been an open problem to either improve the space upper bound or to show that this somewhat odd looking bound is tight. In this paper, we show the latter: any data structure (deterministic or randomized) for monotone minimal perfect hashing of any collection of \(n\) elements from a universe of size \(u\) requires \(\Omega(n\cdot\log\log\log{u})\) expected bits to answer every query correctly. We achieve our lower bound by defining a graph \(\mathbf{G}\) where the nodes are the possible \({u\choose n}\) inputs and where two nodes are adjacent if they cannot share the same \(\text{D}\) . The size of \(\text{D}\) is then lower bounded by the log of the chromatic number of \(\mathbf{G}\) . Finally, we show that the fractional chromatic number (and hence the chromatic number) of \(\mathbf{G}\) is lower bounded by \(2^{\Omega(n\log\log\log u)}\) .

Publisher

Association for Computing Machinery (ACM)

Reference26 articles.

1. Linear time construction of compressed text indices in compact space

2. Djamal Belazzougui, Paolo Boldi, Rasmus Pagh, and Sebastiano Vigna. 2009. Monotone minimal perfect hashing: searching a sorted table with O(1) accesses. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, 785–794.

3. Theory and practice of monotone minimal perfect hashing;Belazzougui Djamal;Journal of Experimental Algorithmics (JEA),2011

4. Linear-time String Indexing and Analysis in Small Space

5. Djamal Belazzougui, Travis Gagie, Veli Mäkinen, and Marco Previtali. 2016. Fully dynamic de Bruijn graphs. In International symposium on string processing and information retrieval. Springer, 145–152.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3