Random Graph-based Multiple Instance Learning for Structured IoT Smart City Applications

Author:

Chiu David K. Y.1,Xu Tao1,Gondra Iker2ORCID

Affiliation:

1. University of Guelph, Guelph, Ontario, Canada

2. St. Francis Xavier University, Antigonish, Nova Scotia, Canada

Abstract

Because of the complex activities involved in IoT networks of a smart city, an important question arises: What are the core activities of the networks as a whole and its basic information flow structure? Identifying and discovering core activities and information flow is a crucial step that can facilitate the analysis. This is the question we are addressing—that is, to identify the core services as a common core substructure despite the probabilistic nature and the diversity of its activities. If this common substructure can be discovered, a systemic analysis and planning can then be performed and key policies related to the community can be developed. Here, a local IoT network can be represented as an attributed graph. From an ensemble of attributed graphs, identifying the common subgraph pattern is then critical in understanding the complexity. We introduce this as the common random subgraph (CRSG) modeling problem, aiming at identifying a subgraph pattern that is the structural “core” that conveys the probabilistically distributed graph characteristics. Given an ensemble of network samples represented as attributed graphs, the method generates a CRSG model that encompasses both structural and statistical characteristics from the related samples while excluding unrelated networks. In generating a CRSG model, our method using a multiple instance learning algorithm transforms an attributed graph (composed of structural elements as edges and their two endpoints) into a “bag” of instances in a vector space. Common structural components across positively labeled graphs are then identified as the common instance patterns among instances across different bags. The structure of the CRSG arises through the combining of common patterns. The probability distribution of the CRSG can then be estimated based on the connections and distributions from the common elements. Experimental results demonstrate that CRSG models are highly expressive in describing typical network characteristics.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference37 articles.

1. First order Gaussian graphs for efficient structure classification

2. Discriminative prototype selection methods for graph embedding;Borzeshi Ehsan Zare;Pattern Recognition,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Next Generation of Multi-Agent Driven Smart City Applications and Research Paradigms;IEEE Open Journal of the Communications Society;2023

2. A survey on state-of-the-art computing for cyber-physical systems;2ND INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN COMPUTATIONAL TECHNIQUES;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3