Affiliation:
1. Yahoo! Labs
2. Georgia Institute of Technology
3. University of Southern California
Abstract
In Web search and vertical search,
recency ranking
refers to retrieving and ranking documents by both relevance and freshness. As impoverished in-links and click information is the the biggest challenge for recency ranking, we advocate the use of Twitter data to address the challenge in this article. We propose a method to utilize Twitter TinyURL to detect fresh and high-quality documents, and leverage Twitter data to generate novel and effective features for ranking. The empirical experiments demonstrate that the proposed approach effectively improves a commercial search engine for both Web search ranking and tweet vertical ranking.
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Theoretical Computer Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献