Fortifying Vehicular Security through Low Overhead Physically Unclonable Functions

Author:

Labrado Carson1,Thapliyal Himanshu1,Mohanty Saraju P.2

Affiliation:

1. University of Kentucky, Lexington, KY, USA

2. University of North Texas, Denton, TX, USA

Abstract

Within vehicles, the Controller Area Network (CAN) allows efficient communication between the electronic control units (ECUs) responsible for controlling the various subsystems. The CAN protocol was not designed to include much support for secure communication. The fact that so many critical systems can be accessed through an insecure communication network presents a major security concern. Adding security features to CAN is difficult due to the limited resources available to the individual ECUs and the costs that would be associated with adding the necessary hardware to support any additional security operations without overly degrading the performance of standard communication. Replacing the protocol is another option, but it is subject to many of the same problems. The lack of security becomes even more concerning as vehicles continue to adopt smart features. Smart vehicles have a multitude of communication interfaces an attacker could exploit to gain access to the networks. In this work, we propose a security framework that is based on physically unclonable functions (PUFs) and lightweight cryptography (LWC). The framework does not require any modification to the standard CAN protocol while also minimizing the amount of additional message overhead required for its operation. The improvements in our proposed framework result in major reduction in the number of CAN frames that must be sent during operation. For a system with 20 ECUs, for example, our proposed framework only requires 6.5% of the number of CAN frames that is required by the existing approach to successfully authenticate every ECU.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3