Affiliation:
1. K.U. Leuven, Leuven, Belgium
Abstract
It is well known that, under certain conditions, it is possible to
split
logic programs under stable model semantics, that is, to divide such a program into a number of different “levels”, such that the models of the entire program can be constructed by incrementally constructing models for each level. Similar results exist for other nonmonotonic formalisms, such as auto-epistemic logic and default logic. In this work, we present a general, algebraic splitting theory for logics with a fixpoint semantics. Together with the framework of
approximation theory
, a general fixpoint theory for arbitrary operators, this gives us a uniform and powerful way of deriving splitting results for each logic with a fixpoint semantics. We demonstrate the usefulness of these results, by generalizing existing results for logic programming, auto-epistemic logic and default logic.
Publisher
Association for Computing Machinery (ACM)
Subject
Computational Mathematics,Logic,General Computer Science,Theoretical Computer Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献