Using role components in implement collaboration-based designs

Author:

VanHilst Michael1,Notkin David1

Affiliation:

1. Department of Computer Science and Engineering, University of Washington, PO Box 352350, Seattle, Washington

Abstract

In this paper we present a method of code implementation that works in conjunction with collaboration and responsibility based analysis modeling techniques to achieve better code reuse and resilience to change. Our approach maintains a closer mapping from responsibilities in the analysis model to entities in the implementation. In so doing, it leverages the features of flexible design and design reuse found in collaboration-based design models to provide similar adaptability and reuse in the implementation. Our approach requires no special development tools and uses only standard features available in the C++ language. In an earlier paper we described the basic mechanisms used by our approach and discussed its advantages in comparison to the framework approach. In this paper we show how our approach combines code and design reuse, describing specific techniques that can be used in the development of larger applications.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Role‐Based Collaboration;E‐CARGO and Role‐Based Collaboration;2021-09-27

2. Role Concepts;E‐CARGO and Role‐Based Collaboration;2021-09-27

3. A new way of crosscutting roles in set oriented programming;Journal of King Saud University - Computer and Information Sciences;2019-12

4. Reusable and interactive classes: a new way of object composition;TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES;2019-09-18

5. Cross-Layer Adaptation in Multi-layer Autonomic Systems (Invited Talk);SOFSEM 2019: Theory and Practice of Computer Science;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3