Affiliation:
1. University of California at Los Angeles, USA
2. Massachusetts Institute of Technology, USA
Abstract
Previous work has shown how to insert fences that enforce sequential consistency. However, for many concurrent algorithms, sequential consistency is unnecessarily strong and can lead to high execution overhead. The reason is that, often, correctness relies on the execution order of a few specific pairs of instructions. Algorithm designers can declare those execution orders and thereby enable memory-model-independent reasoning about correctness and also ease implementation of algorithms on multiple platforms. The literature has examples of such reasoning, while tool support for enforcing the orders has been lacking until now. In this paper we present a declarative approach to specify and enforce execution orders. Our fence insertion algorithm first identifies the execution orders that a given memory model enforces automatically, and then inserts fences that enforce the rest. Our benchmarks include three off-the-shelf transactional memory algorithms written in C/C++ for which we specify suitable execution orders. For those benchmarks, our experiments with the x86 and ARMv7 memory models show that our tool inserts fences that are competitive with those inserted by the original authors. Our tool is the first to insert fences into transactional memory algorithms and it solves the long-standing problem of how to easily port such algorithms to a novel memory model.
Funder
National Science Foundation
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design,Software
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Fence Synthesis Under the C11 Memory Model;Automated Technology for Verification and Analysis;2022
2. Entropy Measurement of Concurrent Disorder;Quantitative Evaluation of Systems;2020
3. Transaction Protocol Verification with Labeled Synchronization Logic;Lecture Notes in Computer Science;2019
4. Don’t Sit on the Fence;ACM Transactions on Programming Languages and Systems;2017-06-30