Accurate profiling in the presence of dynamic compilation

Author:

Zheng Yudi1,Bulej Lubomír2,Binder Walter1

Affiliation:

1. University of Lugano, Switzerland

2. University of Lugano, Switzerland / Charles University, Czech Republic

Abstract

Many profilers based on bytecode instrumentation yield wrong results in the presence of an optimizing dynamic compiler, either due to not being aware of optimizations such as stack allocation and method inlining, or due to the inserted code disrupting such optimizations. To avoid such perturbations, we present a novel technique to make any profiler implemented at the bytecode level aware of optimizations performed by the dynamic compiler. We implement our approach in a state-of-the-art Java virtual machine and demonstrate its significance with concrete profilers. We quantify the impact of escape analysis on allocation profiling, object life-time analysis, and the impact of method inlining on callsite profiling. We illustrate how our approach enables new kinds of profilers, such as a profiler for non-inlined callsites, and a testing framework for locating performance bugs in dynamic compiler implementations.

Funder

European Commission

Oracle

Schweizerische Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization-Aware Compiler-Level Event Profiling;ACM Transactions on Programming Languages and Systems;2023-06-26

2. TIP: Time-Proportional Instruction Profiling;MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture;2021-10-17

3. $$\mathsf{P}^{3}$$: A Profiler Suite for Parallel Applications on the Java Virtual Machine;Programming Languages and Systems;2020

4. Analysis and Optimization of Task Granularity on the Java Virtual Machine;ACM Transactions on Programming Languages and Systems;2019-07-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3