Localization on the pushpin computing sensor network using spectral graph drawing and mesh relaxation

Author:

Broxton Michael1,Lifton Joshua1,Paradiso Joseph A.1

Affiliation:

1. MIT Media Lab, Cambridge, MA

Abstract

This work approaches the problem of localizing the nodes of a distributed sensor network by leveraging distance constraints such as inter-node separations or ranges between nodes and a globally observed event. Previous work has shown this problem to suffer from false minima, mesh folding, slow convergence, and sensitivity to initial position estimates. Here, we present a localization system that combines a technique known as spectral graph drawing (SGD) for initializing node position estimates and a standard mesh relaxation (MR) algorithm for converging to finer accuracy. We describe our combined localization system in detail and build on previous work by testing these techniques with real 40-kHz ultrasound time-of-flight range data collected from 58 nodes in the Pushpin Computing network, a dense hardware testbed spread over an area of one square meter. In this paper, we discuss convergence characteristics, accuracy, distributability, and the robustness of this localization system.

Publisher

Association for Computing Machinery (ACM)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chapter 2 Basic Inputs;Distributed Sensor Arrays Localization;2017-10-06

2. Forest Fire Detection and Localization with Wireless Sensor Networks;Networked Systems;2013

3. Designing a multi-slate reading environment to support active reading activities;ACM Transactions on Computer-Human Interaction;2012-10

4. Knowledge-based multi-criteria optimization to support indoor positioning;Annals of Mathematics and Artificial Intelligence;2011-07

5. Zero-Feedback, Collaborative Beamforming for Emergency Radio: Asymptotic Analysis;Mobile Networks and Applications;2010-11-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3