Optimal stateless model checking for reads-from equivalence under sequential consistency

Author:

Abdulla Parosh Aziz1,Atig Mohamed Faouzi1,Jonsson Bengt1,Lång Magnus1,Ngo Tuan Phong1,Sagonas Konstantinos1

Affiliation:

1. Uppsala University, Sweden

Abstract

We present a new approach for stateless model checking (SMC) of multithreaded programs under Sequential Consistency (SC) semantics. To combat state-space explosion, SMC is often equipped with a partial-order reduction technique, which defines an equivalence on executions, and only needs to explore one execution in each equivalence class. Recently, it has been observed that the commonly used equivalence of Mazurkiewicz traces can be coarsened but still cover all program crashes and assertion violations. However, for this coarser equivalence, which preserves only the reads-from relation from writes to reads, there is no SMC algorithm which is (i) optimal in the sense that it explores precisely one execution in each reads-from equivalence class, and (ii) efficient in the sense that it spends polynomial effort per class. We present the first SMC algorithm for SC that is both optimal and efficient in practice , meaning that it spends polynomial time per equivalence class on all programs that we have tried. This is achieved by a novel test that checks whether a given reads-from relation can arise in some execution. We have implemented the algorithm by extending Nidhugg, an SMC tool for C/C++ programs, with a new mode called rfsc. Our experimental results show that Nidhugg/rfsc, although slower than the fastest SMC tools in programs where tools happen to examine the same number of executions, always scales similarly or better than them, and outperforms them by an exponential factor in programs where the reads-from equivalence is coarser than the standard one. We also present two non-trivial use cases where the new equivalence is particularly effective, as well as the significant performance advantage that Nidhugg/rfsc offers compared to state-of-the-art SMC and systematic concurrency testing tools.

Funder

Vetenskapsrådet

Stiftelsen för Strategisk Forskning

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Testing Concurrent Algorithms on JVM with Lincheck and IntelliJ IDEA;Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis;2024-09-11

2. SPORE: Combining Symmetry and Partial Order Reduction;Proceedings of the ACM on Programming Languages;2024-06-20

3. CSSTs: A Dynamic Data Structure for Partial Orders in Concurrent Execution Analysis;Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3;2024-04-27

4. Greybox Fuzzing for Concurrency Testing;Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2;2024-04-27

5. How Hard Is Weak-Memory Testing?;Proceedings of the ACM on Programming Languages;2024-01-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3