A probabilistic relational algebra for the integration of information retrieval and database systems

Author:

Fuhr Norbert1,Rölleke Thomas1

Affiliation:

1. Univ. of Dortmund, Dortmund, Germany

Abstract

We present a probabilistic relational algebra (PRA) which is a generalization of standard relational algebra. In PRA, tuples are assigned probabilistic weights giving the probability that a tuple belongs to a relation. Based on intensional semantics, the tuple weights of the result of a PRA expression always conform to the underlying probabilistic model. We also show for which expressions extensional semantics yields the same results. Furthermore, we discuss complexity issues and indicate possibilities for optimization. With regard to databases, the approach allows for representing imprecise attribute values, whereas for information retrieval, probabilistic document indexing and probabilistic search term weighting can be modeled. We introduce the concept of vague predicates which yield probabilistic weights instead of Boolean values, thus allowing for queries with vague selection conditions. With these features, PRA implements uncertainty and vagueness in combination with the relational model.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Reference46 articles.

1. The management of probabilistic data

2. BILLINGSLEY P. 1979. Probability and Measure. John Wiley and Sons New York. BILLINGSLEY P. 1979. Probability and Measure. John Wiley and Sons New York.

3. An extended relational document retrieval model

4. Missing information (applicable and inapplicable) in relational databases

Cited by 188 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semirings for probabilistic and neuro-symbolic logic programming;International Journal of Approximate Reasoning;2024-08

2. A Blueprint of IR Evaluation Integrating Task and User Characteristics;ACM Transactions on Information Systems;2024-07

3. Provenance Calculus and Possibilistic Logic: A Parallel and a Discussion;Lecture Notes in Computer Science;2023-11-19

4. A Probabilistic Model for JSON Data;2022 2nd International Conference on Computational Modeling, Simulation and Data Analysis (CMSDA);2022-12-02

5. Independence in Infinite Probabilistic Databases;Journal of the ACM;2022-10-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3