Affiliation:
1. Advanced Geometric Computing Lab, Department of Engineering Design, Indian Institute of Technology, Madras, India-600036
Abstract
While random polygon generation from a set of planar points has been widely investigated in the literature, very few works address the construction of a simple polygon with minimum area (MINAP) or maximum area (MAXAP) from a set of fixed planar points. Currently, no deterministic algorithms are available to compute MINAP/MAXAP, as the problems have been shown to be NP-complete. In this article, we present a greedy heuristic for computing the approximate MINAP of any given planar point set using the technique of randomized incremental construction. For a given point set of
n
points, the proposed algorithm takes
O
(
n
2
log
n
) time and
O
(
n
) space. It is rather simplistic in nature, hence very easy for implementation and maintenance. We report on various experimental studies on the behavior of a randomized heuristic on different point set instances. Test data have been taken from the SPAETH cluster data base and TSPLIB library. Experimental results indicate that the proposed algorithm outperforms its counterparts for generating a tighter upper bound on the optimal minimum area polygon for large-sized point sets.
Publisher
Association for Computing Machinery (ACM)
Subject
Theoretical Computer Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献