An Empirical Study on Randomized Optimal Area Polygonization of Planar Point Sets

Author:

Peethambaran Jiju1,Parakkat Amal Dev1,Muthuganapathy Ramanathan1

Affiliation:

1. Advanced Geometric Computing Lab, Department of Engineering Design, Indian Institute of Technology, Madras, India-600036

Abstract

While random polygon generation from a set of planar points has been widely investigated in the literature, very few works address the construction of a simple polygon with minimum area (MINAP) or maximum area (MAXAP) from a set of fixed planar points. Currently, no deterministic algorithms are available to compute MINAP/MAXAP, as the problems have been shown to be NP-complete. In this article, we present a greedy heuristic for computing the approximate MINAP of any given planar point set using the technique of randomized incremental construction. For a given point set of n points, the proposed algorithm takes O ( n 2 log  n ) time and O ( n ) space. It is rather simplistic in nature, hence very easy for implementation and maintenance. We report on various experimental studies on the behavior of a randomized heuristic on different point set instances. Test data have been taken from the SPAETH cluster data base and TSPLIB library. Experimental results indicate that the proposed algorithm outperforms its counterparts for generating a tighter upper bound on the optimal minimum area polygon for large-sized point sets.

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science

Reference17 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computing Area-Optimal Simple Polygonizations;ACM Journal of Experimental Algorithmics;2022-05-25

2. Greedy and Local Search Heuristics to Build Area-Optimal Polygons;ACM Journal of Experimental Algorithmics;2022-03-17

3. Area-Optimal Simple Polygonalizations: The CG Challenge 2019;ACM Journal of Experimental Algorithmics;2022-03-04

4. Optimization of Algorithms for Simple Polygonizations;Communication and Intelligent Systems;2022

5. On the effectiveness of the genetic paradigm for polygonization;Information Processing Letters;2021-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3