A practical framework for demand-driven interprocedural data flow analysis

Author:

Duesterwald Evelyn1,Gupta Rajiv1,Soffa Mary Lou1

Affiliation:

1. Univ. of Pittsburgh, Pittsburgh, PA

Abstract

The high cost and growing importance of interprocedural data flow analysis have led to an increased interest in demand-driven algorithms. In this article, we present a general framework for developing demand-driven interprocedural data flow analyzers and report our experience in evaluating the performance of this approach. A demand for data flow information is modeled as a set of queries. The framework includes a generic demand-driven algorithm that determines the response to query by iteratively applying a system of query propagation rules. The propagation rules yield precise responses for the class of distributive finite data flow problems. We also describe a two-phase framework variation to accurately handle nondistributive problems. A performance evaluation of our demand-driven approach is presented for two data flow problems, namely, reaching-definitions and copy constant propagation. Our experiments show that demand-driven analysis performs well in practice, reducing both time and space requirements when compared with exhaustive analysis.

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unveiling Vulnerable Smart Contracts: Toward Profiling Vulnerable Smart Contracts using Genetic Algorithm and Generating Benchmark Dataset;Blockchain: Research and Applications;2023-11

2. Bidirectionality in flow-sensitive demand-driven analysis;Science of Computer Programming;2020-05

3. A Set-Based Context Model for Program Analysis;Programming Languages and Systems;2020

4. Higher-order Demand-driven Program Analysis;ACM Transactions on Programming Languages and Systems;2019-09-30

5. Demand Control-Flow Analysis;Lecture Notes in Computer Science;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3