Parallelizing nonnumerical code with selective scheduling and software pipelining

Author:

Moon Soo-Mook1,Ebcioğlu Kemal2

Affiliation:

1. Seoul National Univ., Seoul, Korea

2. IBM T. J. Watson Research Center, Yorktown Heights, NY

Abstract

Instruction-level parallelism (ILP) in nonnumerical code is regarded as scarce and hard to exploit due to its irregularity. In this article, we introduce a new code-scheduling technique for irregular ILP called “selective scheduling” which can be used as a component for superscalar and VLIW compilers. Selective scheduling can compute a wide set of independent operations across all execution paths based on renaming and forward-substitution and can compute available operations across loop iterations if combined with software pipelining. This scheduling approach has better heuristics for determining the usefulness of moving one operation versus moving another and can successfully find useful code motions without resorting to branch profiling. The compile-time overhead of selective scheduling is low due to its incremental computation technique and its controlled code duplication. We parallelized the SPEC integer benchmarks and five AIX utilities without using branch probabilities. The experiments indicate that a fivefold speedup is achievable on realistic resources with a reasonable overhead in compilation time and code expansion and that a solid speedup increase is also obtainable on machines with fewer resources. These results improve previously known characteristics of irregular ILP.

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Loop unrolling optimization for dual SIMD extension;2024-05-24

2. Highly Parallel Multi-FPGA System Compilation from Sequential C/C++ Code in the AWS Cloud;ACM Transactions on Reconfigurable Technology and Systems;2022-08-08

3. Memory Partitioning in the Limit;International Journal of Parallel Programming;2015-10-26

4. Just-In-Time Software Pipelining;Proceedings of Annual IEEE/ACM International Symposium on Code Generation and Optimization;2014-02-15

5. Instruction Scheduling in Microprocessors;Studies in Computational Intelligence;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3