Adaptive Epidemic Dynamics in Networks

Author:

Xu Shouhuai1,Lu Wenlian2,Xu Li1,Zhan Zhenxin1

Affiliation:

1. University of Texas at San Antonio

2. Fudan University

Abstract

Theoretical modeling of computer virus/worm epidemic dynamics is an important problem that has attracted many studies. However, most existing models are adapted from biological epidemic ones. Although biological epidemic models can certainly be adapted to capture some computer virus spreading scenarios (especially when the so-called homogeneity assumption holds), the problem of computer virus spreading is not well understood because it has many important perspectives that are not necessarily accommodated in the biological epidemic models. In this article, we initiate the study of such a perspective, namely that of adaptive defense against epidemic spreading in arbitrary networks. More specifically, we investigate a nonhomogeneous Susceptible-Infectious-Susceptible (SIS) model where the model parameters may vary with respect to time. In particular, we focus on two scenarios we call semi-adaptive defense and fully adaptive defense, which accommodate implicit and explicit dependency relationships between the model parameters, respectively. In the semi-adaptive defense scenario, the model’s input parameters are given; the defense is semi-adaptive because the adjustment is implicitly dependent upon the outcome of virus spreading. For this scenario, we present a set of sufficient conditions (some are more general or succinct than others) under which the virus spreading will die out; such sufficient conditions are also known as epidemic thresholds in the literature. In the fully adaptive defense scenario, some input parameters are not known (i.e., the aforementioned sufficient conditions are not applicable) but the defender can observe the outcome of virus spreading. For this scenario, we present adaptive control strategies under which the virus spreading will die out or will be contained to a desired level.

Funder

UTSA

Office of Naval Research

Air Force Office of Scientific Research

Publisher

Association for Computing Machinery (ACM)

Subject

Software,Computer Science (miscellaneous),Control and Systems Engineering

Reference17 articles.

1. Anderson R. and May R. 1991. Infectious Diseases of Humans. Oxford University Press. Anderson R. and May R. 1991. Infectious Diseases of Humans . Oxford University Press.

2. Completely Positive Matrices

3. RAID

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Internet-Based Social Engineering Psychology, Attacks, and Defenses: A Survey;Proceedings of the IEEE;2024-03

2. Characterizing Privacy Risks in Healthcare IoT Systems;Communications in Computer and Information Science;2024

3. Analysis of Contagion Dynamics with Active Cyber Defenders;2023 62nd IEEE Conference on Decision and Control (CDC);2023-12-13

4. Impact Assessment and Defense for Smart Grids With FDIA Against AMI;IEEE Transactions on Network Science and Engineering;2023-03-01

5. AICA Development Challenges;Advances in Information Security;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3